

THE KENYA POLYTECHNIC

SURVEYING & MAPPING DEPARTMENT HIGHER DIPLOMA IN LAND SURVEY END OF YEAR I EXAMINATIONS NOVEMBER 2006 GEODESY 3 HOURS

INSTRUCTIONS TO CANDIDATES:

You should have the following for this examination:

Answer booklet

Calculator/Mathematical tables

Answer any FIVE of the following EIGHT questions.

All questions carry equal marks and the maximum marks for each part of a question are as shown.

This paper consists of 3 printed pages.

© 2006, The Kenya Polytechnic Examinations Office

Use Clarke 1880 ellipsoid whose parameters are $a=6378293m\ 1/f=294.3$ where applicable

1. a) "Geodesy is the science of measuring and portraying the earth's surface"		
i) Criticize this classical definition in view of the scope of present day		
geodesy		
ii) State the appropriate defin	ition of geodesy	(8 marks)
b) Highlight the contributions of the following in the development of geodesy:		
i) Thales		
ii) Pythagoras		
iii) Eratosthenes		
iv) Aristotle		(12 marks)
2. a) Outline the three sub-disciplines of geodesy		(4 marks)
b) Explain the following surfaces used in geodesy:		
i) A plane	ii) A sphere	
iii) A geoid		(12 marks)
c) Distinguish between bi-axial and tri-axial ellipsoids		(4 marks)
3. With the aid of diagrams, explain different types of the following coordinates		
systems:		
i) Geocentric	ii) Topocentric	(20 marks)
4. a) i) Derive an expression for computing the second eccentricity in terms of the		
first eccentricity		
ii) Hence compute the second eccentricity for Clarke 1880 ellipsoid(8 marks)		
b) State:		
i) Factors considered in the choice of a reference ellipsoid for different		
regions		
ii) Parameters used to define a reference ellipsoid		(12 marks)
5. a) i) With the aid of a diagram, derive the expression for computing the		
meridian coordinates of a point in terms of reduced latitude (7 marks)		

- ii) Compute the meridian coordinates of a point whose reduced latitude is 45° 13′ 30″ (5 marks)
- b) Show that $\tan \varphi = (1 + e')^{1/2} \tan \beta$ and hence calculate the geodetic latitude of a point whose reduced latitude is $40^{\circ} 13' 50''$ (8 marks)
- 6. a) Derive the expressions for computing the geodetic coordinate of a point in terms of rectangular coordinates. (10 marks)
 - b) Compute the geodetic coordinates of a point whose Cartesian coordinates are:

X = 3976915.663m

Y = -6.269.199m

Z = 4969845.956m

- 7. a) Explain the principal normal sections used in geodesy. (5 marks)
 - b) Derive an expression for computing the radius of curvature of the meridian section (15 marks)
- 8. With the aid of a diagram derive the expression for computing x-coordinate on an ellipsoidal meridian in terms of eccentricity, semi-major axis and geodetic latitude (20 marks)