

THE KENYA POLYTECHNIC UNIVERSITY
 COLLEGE

DEPARTMENT OF SURVEYING \& MAPPING
DIPLOMA IN LAND SURVEY
END OF YEAR I EXAMINATIONS
NOVEMBER 2007
PHYSICS
3 HOURS

INSTRUCTIONS TO CANDIDATES:

You should have the following for this examination:
Answer booklet
Scientific calculator
Answer any FIVE of the following EIGHT questions.
Use neat sketches where applicable.
All questions carry equal marks and the maximum marks for each part of a question are as shown.

This paper consists of $\underline{\mathbf{3}}$ printed pages.

1. (a) Explain:
(i) The significance of field lines in a gravitational field.
(ii) How temperature changes mechanical and internal energy of a body.
(4 marks)
(b) Of a 500 kg vehicle accelerating at $6 \mathrm{~ms}^{-2}$ and a 2 ton vehicle accelerating at $1.5 \mathrm{~ms}^{-2}$, identify the one with a greater force.
(c) (i) Apart from a force moving a distance, state other conditions that must be met for work to have been done.
(ii) Explain the fact that gravity does negative work on a stone thrown upwards. (4 marks)
(d) List FIVE sources of energy. (5 marks)
(e) If the resultant of a force 60° from its original direction is 50 N , calculate the original force.
2. Prove Kepler's first and third laws of planetary motion.
(20 marks)
3. (a) Compare and contrast mercury and water as thermometric liquids.
(10 marks)
(b) Advice Faith on how to use her yellow, white and black dresses on different weather conditions, based on colour alone. (5 marks)
(c) Calculate the acceleration required to change the velocity of a vehicle from $12 \mathrm{~ms}^{-1}$ to $20 \mathrm{~ms}^{-1}$ in 10 seconds.
4. (a) Draw a labeled diagram of the gas thermometer.
(b) The original vertical velocity of a ball kicked at 60° is $26 \mathrm{~ms}^{-1}$. Calculate the velocity at which it was kicked.
(c) Calculate the power of a pump that lifts 200 kg of water 6 m in 10 seconds.
5. (a) Explain the land and breeze sea phenomenon.
(b) Four bodies on heating have the following colours: violet, yellow, blue and red. List them in terms of their temperatures, starting with the hottest.
(c) Give reasons as to why most gases are real and not ideal. (6 marks)
(d) A car on traveling 4 m on a round-about covers 30° at the centre. Calculate the radius of the round-about.
6. (a) Explain the following:
(i) Absolute zero temperature is unattainable in any physical process.
(ii) A tin container with a small hole approximates a black body.
(4 marks)
(b) List factors upon which the rate of conduction of heat depends. (4 marks)
(c) State the cause of diffuse reflection.
(2 marks)
(d) If the period of revolution of a body is 1.5 seconds, calculate its angular velocity.
(5 marks)
(e) If all the kinetic energy of a 1000 kg car traveling at $20 \mathrm{~m} / \mathrm{s}$ is converted into heat in the steel brake-drums, find the rise in temperature of the 20 kg steel brake-drums when the vehicle brakes to rest. Take the specific heat capacity of steel as $450 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$.
7. (a) Draw diagrams illustrating how a prism can be used to turn:
(i) a ray by 90°
(ii) a ray by 180°
(iii) an inverted image upright
(b) Calculate the acceleration of a 1.5 ton vehicle that has a force of $60,000 \mathrm{~N}$. (5 marks)
8. (a) Prove that plane mirror images are as far behind the mirror as the object is in front.
(b) A spring extended using a force of 50 N is found to have an elastic potential energy of 2.5 J . Calculate the extension of the spring. (5 marks)
(c) 40 g of copper at $200^{\circ} \mathrm{C}$ are added to 50 g of water at $10^{\circ} \mathrm{C}$ in a copper calorimeter of mass 52 g . Calculate the final temperature if specific heat capacity of copper is $400 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ and that of water is $4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$.
