

THE KENYA POLYTECHNIC UNIVERSITY
 COLLEGE

DEPARTMENT OF SURVEYING \& MAPPING
 DIPLOMA IN LAND SURVEY
 END OF YEAR I EXAMINATIONS
 NOVEMBER 2007

MATHEMATICS
3 HOURS

INSTRUCTIONS TO CANDIDATES:

You should have the following for this examination:
Answer booklet
Scientific calculator
Answer any FIVE of the following EIGHT questions.
All questions carry equal marks and the maximum marks for each part of a question are as shown.

This paper consists of $\underline{4}$ printed pages.
© 2007, The Kenya Polytechnic Examinations Office

1. (a) (i) Make ' W ' the subject of the formula if

$$
Z=\sqrt{R^{2}+[W L-1 / L Q]^{2}}
$$

(ii) Determine the value of W when $Z=1 / 7, R=1 / 3, Q=0.01$ and

$$
\begin{equation*}
L^{2}=1 / 5 . \tag{9marks}
\end{equation*}
$$

(b) Solve for x in the quadratic equation $4 x^{2}+8 x-20=0$.
(c) Solve for X, Y and Z in the equations:

$$
\begin{align*}
& X+Y+Z=0 \\
& 4^{3 Z-2}+2^{Y}+16^{X+2}=32 \tag{7marks}\\
& 3^{Z}+3^{4 X+1}+243^{Y}=27
\end{align*}
$$

2. (a) A solid pyramid on a square base of side 4 cm has the slant side of length 12 cm . Find, correct to 2d.p., the:
(i) Vertical height of the pyramid
(ii) Volume of the pyramid
(b) Figure 1 is an annulus frustum having measurements as shown. Use the measurements to calculate the volume of the solid in cm^{3}.

Figure 1
Assume the height of the big pyramid $=4 x \mathrm{~cm}$.
(c) Solve for x in the given equation: $4\left(\frac{x}{3}+\frac{1}{4}\right)-5\left(\frac{x}{3}-\frac{1}{8}\right)=\frac{1}{7}(2 x-16)$
3. (a) Find the equation of the circle whose diameter has the end-points $(4,3)$ and $(6,1)$.
(5 marks)
(b) Determine the equation of a circle passing through the three points 5,3), $(6,2)$ and $3,-1)$. Give the center and the radius.
(10 marks)
(c) Given the equation $x^{2}+y^{2}+6 x+10 y-2=0$, find the radius and the center of the circle.
4. (a) Obtain the first four terms of the expansion $\left(1+\frac{1}{12} x\right)^{10}$ in ascending powers of x; Hence find the value of $(1.005)^{10}$, correct to 4 decimal places. (6 marks)
(b) Simplify, leaving your answer in surd form: $\quad(1+\sqrt{2})^{4}-(1-\sqrt{2})^{4}$ (6 marks)
(c) How many permutations are there of r objects chosen from n unlike objects?
(d) A mixed hockey team containing 5 men and 6 women is to be chosen from 7 men and 9 women. In how many ways can this done? (4 marks)
5. (a) What is a parabola?
(b) Solve for the directric line and the focus of a parabola whose equation is given as $2 x^{2}+5 y-3 x+4=0$. Sketch the parabola on a Cartesian plane. (8 marks)
(c) Given an ellipse equation $8 x^{2}+6 y^{2}+64 x+72 y+108=0$. Analyze the ellipse and find the major axis.
(d) Prove if the following equations are orthogonal:
$x^{2}+y^{2}-4 x+2=0$
(ii) $x^{2}+y^{2}+6 y-2=0$
6. (a) Solve the equation: $2.9 \cos ^{2} \alpha-7 \sin \alpha+1=0$.
(b) From the tip of a vertical cliff 80.00 cm high the angles of depression of two buoys lying due east of the cliff are 23^{0} and 15^{0} respectively. How far apart are the buoys?
(c) Prove that $\sin 3 A=3 \sin A-4 \sin ^{3} A$
(d) If $\operatorname{Sin} A=\frac{3}{5}$ and $\operatorname{Cos} B=\frac{15}{17}$ where A is obtuse and B is acute, find the exact value of $|\operatorname{Sin}(A+B)|$?
7. (a) Find the area of a triangle whose sides are $11.3 \mathrm{~cm}, 9.1 \mathrm{~cm}$ and 7.8 .
(4 marks)
(b) Find the maximum and minimum values of $2 \sin \theta-5 \cos \theta$, and the corresponding values of θ between 0^{0} and 360°.
(c) A swimming pool is 55.0 m long and 10.0 m wide. The perpendicular depth at the deep end is 4.2 m and at the shallow end is 140 cm , the slope being uniform. The pool needs two coats of a protective paint inside. Find how many litres of paint will be required if a litre covers $12 \mathrm{~m}^{2}$.
8. (a) Find the approximate value of $\frac{1-\cos 2 \theta}{\theta \tan \theta}$ when θ is small. (4 marks)
(b) Differentiate:
(i) $\sin (2 x+3)$
(ii) $\cos ^{2} x$
(c) Find the equation of the locus of a point P which moves so that it is equidistant from two fixed points A and B whose coordinates are 3,2) and $(5,-1)$ respectively.
(d) Find the equation of the tangent and normal to the curve $y=3 x^{2}-8 x+5$ at a point where $x=2$.

