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 (b) (i) Find the approximate change in volume of a cylinder of radius 3cm 

   and height 12cm when radius increases by 0.4cm and height   

   decreases by 0.25cm.     (5 marks) 

  (ii) Given the function ,
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2. (a) If ,

110

432

433























A find A-1.      (3 m arks) 

 (b) (i) Find the inverse of the following matrix by partitioning: 
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  (ii) Find the eigen values and eigen vectors of the matrix    
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3. (a) Evaluate: 
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 (b) Prove that: .
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4. (a) Find the value of the Jacobian 
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  ,cosrx  .sinry        (10 marks) 
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 (b) Given the matrices ,
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5. (a) Convert the point (-1, 1, )2 from Cartesian to spherical coordinates. 

           (8 marks) 
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6. (a) Find the points of intersection of the two curves yx 22  and .
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  Sketch the two curves and calculate the area enclosed by them. (11 marks) 

 (b) For the parabola ,152 xy   find the coordinates of the centroid of the area  

  bounded by the curve, x-axis and the ordinate x=5.  (5 marks) 

 (c) Obtain the Maclaurin’s series for x1sin up to the term in x5. (4 marks) 

7. (a) Show that: 
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 (b) Solve the equation: 24.1sin3cos    in the range .3600 00    

           (4 marks) 

 (c) (i) Use Simpson’s rule with five ordinates to evaluate dxex x
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   correct to six decimal places.    (6 marks) 
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8. Differentiate the following with respect to x: 
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  (v) 83 233  xyyx       (20 marks) 

 


