# THE KENYA POLYTECHNIC 

SURVEYING \& MAPPING DEPARTMENT HIGHER DIPLOMA IN LAND SURVEY END OF YEAR I EXAMINATIONS<br>NOVEMBER 2006<br>MATHEMATICS<br>3 HOURS

## INSTRUCTIONS TO CANDIDATES:

You should have the following for this examination:
Answer booklet
Calculator/Mathematical tables
Answer any FIVE of the following EIGHT questions.
All questions carry equal marks and the maximum marks for each part of a question are as shown.

This paper consists of 3 printed pages.

1. (a) Given the function $f(x, y)=\frac{1}{\sqrt{y}} e^{-\frac{(x-t)^{2}}{4 y}}$ show that $\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial f}{\partial y}$. (6 marks)
(b) (i) Find the approximate change in volume of a cylinder of radius 3 cm and height 12 cm when radius increases by 0.4 cm and height decrease by 0.25 cm .
(ii) Given the function $V=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$, show that: $\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{d y^{2}}=0$.
(9 marks)
2. (a) If $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$, find $\mathrm{A}^{-1}$.
(3 m arks)
(b) (i) Find the inverse of the following matrix by partitioning:

$$
B=\left[\begin{array}{lll}
1 & 3 & 3 \\
1 & 4 & 3 \\
1 & 3 & 4
\end{array}\right]
$$

(ii) Find the eigen values and eigen vectors of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & -1  \tag{10marks}\\
1 & 2 & 1 \\
2 & 2 & 3
\end{array}\right]
$$

3. (a) Evaluate:
(i) $\int_{1}^{2} \frac{3 x^{2}+2 x+2}{(x+1)\left(x^{2}+2\right)} d x$
(ii) $\int \sin ^{2} 2 \theta \cos ^{3} 2 \theta d \theta \quad$ (10 marks)
(b) Prove that: $\quad \int_{0}^{1} \int_{0}^{1} \frac{x-y}{(x+y)^{3}} d y d x=\frac{1}{2}$.
(10 marks)
4. (a) Find the value of the Jacobian $\frac{\partial(u, v)}{\partial(r, \theta)}$ where $u=x^{2}-y^{2}, v=2 x y$ and $x=r \cos \theta, y=r \sin \theta$.
(b) Given the matrices $A(t)=\left[\begin{array}{cc}t & 1 \\ -1 & t^{2}\end{array}\right], B(t)=\left[\begin{array}{cc}2 & t^{2} \\ t^{3} & 1\end{array}\right]$ show that $\frac{d B^{\prime}}{d t} A^{\prime}+B^{\prime} \frac{d A^{\prime}}{d t}=\frac{d}{d t}(A B)^{\prime}$
5. (a) Convert the point $(-1,1,-\sqrt{2})$ from Cartesian to spherical coordinates.
(8 marks)
(b) Given $y=\tan ^{-1}\left[\frac{b}{a} \tan x\right]$, show that $\frac{d y}{d x}=\frac{a b \sec ^{2} x}{a^{2}+b^{2} \tan ^{2} x}$.
6. (a) Find the points of intersection of the two curves $x^{2}=2 y$ and $\frac{y^{2}}{16}=x$.

Sketch the two curves and calculate the area enclosed by them. (11 marks)
(b) For the parabola $y^{2}=15 x$, find the coordinates of the centroid of the area bounded by the curve, $x$-axis and the ordinate $x=5$.
(c) Obtain the Maclaurin's series for $\sin ^{-1} x$ up to the term in $x^{5}$. (4 marks)
7. (a) Show that: $\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}=\tan \left\{\frac{\pi}{4}+\frac{\theta}{2}\right\}$
(b) Solve the equation: $\cos \theta+\sqrt{3} \sin \theta=1.24$ in the range $0^{\circ} \leq \theta \leq 360^{\circ}$.
(4 marks)
(c) (i) Use Simpson's rule with five ordinates to evaluate $\int_{0}^{0.4} x^{3} e^{-x^{2}} d x$ correct to six decimal places.
(ii) Find: $\int_{0}^{\frac{\pi}{6}} \theta \cos 5 \theta d \theta$
8. Differentiate the following with respect to x :
(i) $y=\frac{\sec x+\tan x}{\sec x-\tan x}$
(ii) $y=x^{2} \sin \frac{1}{x}$
(iii) $y=\tan ^{-1}[\sec x+\tan x]$
(iv) $y=e^{3 x} x^{4} \sin \frac{1}{3} x$
(v) $\quad x^{3}+y^{3}+3 x y^{2}=8$
(20 marks)

