

THE KENYA POLYTECHNIC

ELECTRICAL/ELECTRONICS ENGINEERING DEPARTMENT HIGHER DIPLOMA IN ELECTRICAL ENGINEERING

END OF YEAR II EXAMINATIONS

NOVEMBER 2006

COMMUNICATION SYSTEMS

3 HOURS

INSTRUCTIONS TO CANDIDATES:

You should have the following for this examination:

Answer booklet

Calculator/Mathematical tables

Answer any FIVE of the following EIGHT questions.

All questions carry equal marks and the maximum marks for each part of a question are as shown.

This paper consists of 4 printed pages.

© 2006, The Kenya Polytechnic Examinations Office

1.	(a) W	With the aid of a block diagram, describe the operation of an independent						
	si	ideba	nd transmitter.	(6 marks)				
	(b) (i	i)	Draw a circuit diagram of a varactor diode modulat	or and describe				
			its operation.					
	(i	i)	An oscillator operating at 200MHz has a 75pF capacitor in its					
			timing circuit. Determine, from first principles the total capacitance					
			swing the varactor must supply to have a 100KHz p	eak deviation.				
				(14 marks)				
2.	2. (a) Explain the following with respect to radio wave propagation:							
	(i	i)	Tropospheric scatter (ii) Ducting	(10 marks)				
	(b) D)escri	be TWO effects of the earth's curvature on radio wa	ve propagation.				
	(c) (i	i)	Derive an expression for the maximum distance of l	(2 marks) ine of sight				
			transmission for a radio system in terms of the heigh	hts of the				
			transmitting and receiving aerials. Assume the radius of the earth					
			to be 6370km.					
	(i	i)	The transmitting and receiving aerials are each 100r	n high.				
			Determine the line of sight distance.	(8 marks)				
3.	(a) W	With the aid of a diagram, describe the following with respect to aerials:						
	(i	i)	Broadside array (ii) End fire array	(8 marks)				
	(b) (i	i)	Describe with the aid of a diagram the parabolic ref	lector.				
	(i	i)	A parabolic reflector operating at 10GHz has a diam	neter of 6m and				
			an illumination efficiency of 0.65. Determine is direct	ctivity,				
			beam width and effective area.	(12 marks)				
4.	(a) E	xplai	n the following multiple access methods with respec	et to satellites:				
	(i	i)	FDMA (ii) TDMA	(6 marks)				
	(b) D)erive	e an expression for the velocity of satellite in orbi	t in terms of its				
	n	nass, e	earth's radius and height above ground.	(6 marks)				

- (c) Calculate the carrier to noise power (C/No) in decibels at an earth receiving station, from a satellite transmitting an effective isotropic radiated power (EITRP) of 49.5dBW at a frequency of 12GHz. The earth station antenna angle of elevation is 1570C and the receiving figure of merit is 40.7dBs. (8 marks)
- 5. (a) Describe the following with respect to noise:
 - (i) Noise factor
- (ii) Noise temperature (4 marks)
- (b) With the aid of a block diagram describe how the noise factor of an active network may be measured. (5 marks)
- (c) (i) Two amplifying stages are connected as shown in figure 1.

Derive an expression for the total equivalent noise resistance at the input of the first stage.

- (ii) The first stage of a two-stage amplifier has a voltage gain of 10, a 600Ω input resistor, a 1, 600Ω equivalent noise and a $27k\Omega$ output resistor. For the second stage these values are 25, $81k\Omega$, $10k\Omega$ and $1M\Omega$ respectively. Calculate the equivalent input noise resistance of this two-stage amplifier. (11 marks)
- 6. (a) With the aid of a circuit diagram, describe the operation of an anode modulated class C amplifier. (8 marks)

(b)	The modulator in (a) has an audio frequency sine wave of 3kV peak value							
	developed across the secondary of the modulating transformer. The stage							
	has an anode efficiency of 75% and delivers 1.5kW of power into the load.							
	Calculate:							
	(i)							
	(ii)	The mean anode current.						
	(iii)	The power supplied by the modulator.						
	(iv)	v) The total r.f power delivered to the load circuit.						
	State t	(12 marks)						
(a)	Define the following with respect to telephony:							
	(i)	Full availability	(ii)	Busy hour				
	(iii)	Grade of service			(3 marks)			
(b)	With	the aid of a block diagra	aid of a block diagram, describe how a digital computer may be					
	used f	or a message switching t	elephon	e system.	(12 marks)			
(c)	A full availability group of 4 switches has 2 earlengs of traffic offered to it.							
	Calculate the grade of service. State and define all formulae used.							
					(5 marks)			
(a)	Define the following with respect to waveguides:							
	(i)	Cut-off wavelength	(ii)	Dormant mode	(2 marks)			
(b)	A rectangular waveguide measures 3x4.5cm internally. A signal of 9GHz							
	is propagated in it. Calculate, for a TE ₁₀ mode;							
	(i)	The cut-off wavelength						
	(ii)	(ii) The guide wavelength						
	(iii) The group and phase velocities							
	(iv)	(7 marks)						
(c)	With the aid of diagram(s) describe the construction and operation of a							
	PIN d	(11 marks)						

7.

8.