KENYA POLYTECHNIC UNIVERSITY COLLEGE

SCHOOL OF HEALTH SCIENCES AND TECHNOLOGY

DEPARTMENT OF COMMUNITY AND PUBLIC HEALTH

DIPLOMA IN COMMUNITY AND PUBLIC HEALTH

END OF STAGE 2 EXAMINATION

NOVEMBER 2011

NUMERICAL METHODS

TIME 2 HOURS

Instructions to candidates

- 1. You should have the following for this examination
 - Electronic calculator
 - Official answer booklet
- 2. The paper consists of FIVE questions each out of 20 Marks.
- 3. Attempt FOUR questions out of FIVE questions
- 4. The maximum marks for each part of a question are as shown
- 5. Show all your working neatly

This paper consists of 3 printed pages © 2011 The Kenya Polytechnic University College Examinations Office 1 a) Tabulate the function $f(x) = \frac{1}{1+x}$ Over 0 [0.5]3

Hence apply the interpolation and extrapolation methods to approximate, correct to three decimal places.

i)	f (1.26)	
ii)	f (3.25)	(9 Marks)

b) Table 1

Х	-3	-2	-1	0	1	2	3
f (x))	11	6	3	2	3	6	11

Develop a table of finite differences for Table 1. Hence determine the function f(x) and solve f(x) = 0 (11 Marks).

2. a) Evaluate

$$\frac{\mathrm{dx}}{2+\mathrm{x}}$$
 (4Marks)

b) Use the Trapezoidal rule with 7 ordinates to approximate $\frac{dx}{2+x}$

Hence calculate the percentage error in your approximated value (16 Marks)

- 3 a) One root to the equation $x^3 2x + 1 = 0$ is x = 1. obtain, in surd form, the other two remaining roots (6 Marks)
 - b) Formulate FIVE possible iterative formulae to solve the equation: $x^3 - 2x + 1 = 0$ (8 Marks)
 - c) Starting with $x_1 = 0.5$, through three iterations, determine the better root to $x^3 2x_n + 1 = 0$, using the formula

$$x_{n+1} = \frac{2x_n^3 - 1}{3x_n^2 - 2}$$
 (6 Marks)

4. Table 2

Х	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
g(x)	1	0.125	0.0	1.375	3.0	11.625	22.0	36.875	57.0

One functional value in Table 2 is wrongly recorded.

a) Use finite differences to correct the wrongly recorded value (10 Marks)

b) Apply the Newton – Gregory formula to determine

i)	f (0.582)	
ii)	f (4.15)	(10 Marks)

5. a) Evaluate $(x^2 - 2x + 1) dx$

(3 Marks)

b) Use the Simpson's rule with 9 ordinates to estimate the area bounded by the ordinates x = 0, x = 3, the line y = 0 and the curve given by the equation $y = x^2 - 2x + 1$. Hence, using the result in 5 a), calculate the percentage error in the estimated area (17 Marks)