ANAWATICAL

TITLE:

EFFLUENT EVALUATION FROM CASTLE

BREWERY FACTORY IN THIKA

TRADE PROJECT

PRESENTED BY: SAMWEL KIPNGETICH KONES

INDEX NUMBER: 401001/751

PRESENTED TO:

THE KENYA NATIONAL EXAMINATION COUNCIL

THE KENYA POLYTECHNIC

DEPARTMENT OF APPLIED SCIENCE

SERIES: NOVEMBER 2000

TABLE OF CONTENTS

ê

30

PAGE

Declaration	i
Dedication	ii
Acknowledgement	iii
Abstract	iv

CHAPTER ONE

1.0 Introduction	1	
1.01 Brewing	3	
1.02 Pollution and measurement	6	
1.03 Statement of the problem	7	
1.1 Objectives of the study		
1.2 Justification of the study		
1.3 Literature-review		
1.4 Methodology	12	
1.4.1 Chemical tests	14	
1.4.2 principle of operation of a single beam spectrophotometer	15	
1.4.3 principle of operation of a flame photometer	18	

CHAPTER TWO

2.0 Sampling	
2.1.0 Data analysis	21
2.1.1. Requirements	21
2.1.1.1. Reagents and chemicals	21
2.1.1.2. Apparatus	21

		PAGE
2.2.0	Preparation Of the reagents	22
2 2.1	Standard potassium	22
2.2.2	Sulphuric acid reagent	22
2.2.3	Ferroin indicator solution	22
2.2.4	Standard ferrous ammonium sulphate titrant	22
2.2.5	Starch indicator solution	23
2.3.0	Equipments	23
2.4	Procedure	25
2.4.1.	Determination of biochemical oxygen demand (BOD)	25
2.4.2.	Determination of chemical oxygen demand (COD)	26
2.4.3.	Advantages of COD over BOD	27
2.4.4.	Determination of total suspended solids (TSS)	27
2.4.5.	Determination of alkaline potassium persulphate and sulphide	28
2.4.6.	Determination of sodium ions	28
2.4.7.	Determination of potassium ions	29
2.4.8.	Sample preparation (by digestion method)	29
2.4.9.	Aspiration of the samples, standards and blanks into	
	atomic absorption spectrophotometer	29

CHAPTER THREE

3.0	Observations and results	31
3.1	Results from whirl pool (Raw effluent)	32
3.2	Results from aeration tanks	33
3.3	Results from sedimentation vessel	34
3.4	Results from final effluent	35
3.5	Calibration curve of sodium	36
3.6	Calibration curve of potassium	37

.

		PAGE
3.7	Calibration curve of iron	38
3.8	Calibration curve of zinc	39
3.9	Calibration curve of lead	40

CHAPTER FOUR

4.0 Discussion	41
4.1 Conclusion	42
4.2.0 Recommendation	43
4.2.1. Primary treatment	44
4.2.2. Secondary treatment	44
4.2.3. Tertiary treatment	45
4.2.4. Renovation of waste effluent	45
4.2.5. Recovery of useful products from the waste	46
4.3.0 Appendice	

	AND AL
Appendix 1	47
Appendix 2	48
Appendix 3	49
Appendix 4	50
References	51

ABSTRACT

In this project, samples of effluent from four parts of castle Brewery Factory's effluent treatment plant (ETP) were physically and chemically analysed. These four areas are sedimentation pond, aeration pond, maturation pond and the final effluent tanks. The analysis was carried out as per the given procedures which were found to be the most accurate.

The final effluent which is being drained into the nearby rivers after undergoing various treatment procedures is the one that determines the pollution extend of the brewery to the water courses and the environment in general.

From the analysis and experiments carried during the research, the average concentrations of the following parameters were obtained.-

(1)	Biochemical oxygen Demand (BOD)	343.3 mgl/
(ii)	Chemical oxygen Demand (COD)	1146 mg/I
(111)	Sulphide concentration	56.0 ppm
(ı∨)	Total suspended solids (TSS)	999 mg/l
(v)	Potassium, K ⁺	5.7 ppm
(vi)	Sodium , Na⁺	5.0 ppm
(∨⊓) from, Fe^{2t}	2 5 ppm
(vii	i) Lead, Pb ^{2*}	2 0 ppm
(1×)	Temperature	28 4 ⁰ fc
(x)	РН	8.7
(xi)	Conductivity	$12892 \mathrm{m}\Omega~\mathrm{cm}^2$

1

The above being major sources of water pollution, their values were noted to be far much above the recommended values for drinking water given by the World Health Organisation (WHO) eg the maximum level of BOD *s* should not be greater than 20 mg/l, comparing this to the BOD *s* value of the final effluent of 343.3mg/l obtained, the level is far much greater. This trend also applies to the other parameters whereby the set standard limits by W.H.O are very much below the values obtained from the analysis.