Improving the Bandwidth of a Circular Microstrip Patch Antenna through Shape Modification

dc.contributor.authorLangat, Benard Kipkorir
dc.contributor.authorLangat, Kibet P
dc.contributor.authorMusyoki, Stephen
dc.date.accessioned2015-05-26T16:08:12Z
dc.date.available2015-05-26T16:08:12Z
dc.date.issued2014
dc.description.abstractAn antenna is used in a communication system to radiate or receive radio waves. The most desired antenna is one which is small in size, light in weight, cheap and can easily fit to the surface attached. All these features are inherently possessed by microstrip patch antennas. However, no antenna is perfect. Microstrip patch antennas like all other types of antennas do have their associated disadvantages. One of the major disadvantages of this type of antenna is narrow bandwidth. In this study, the narrow bandwidth of a circular microstrip patch antenna was improved through shape modification. The bandwidth of the antenna was optimized by adding some parts to and removing some parts from the initial circular patch. Although the main aim was to improve the bandwidth, it had to be ensured that other important parameters of the antenna such as radiation efficiency, impedance matching and gain are not degraded in the process. Microstrip line feeding technique was utilized in the design. HFSS 13.0 full wave simulator based on Finite Element Method (FEM) was used to simulate the antenna. Simulation results were then presented. Simulation results of return loss showed that the antenna achieved a bandwidth of 13.16% at 1.755 GHz and a very broad bandwidth from 3.315-20 GHz. This is a great improvement when compared with the bandwidth of a conventional microstrip patch antenna of less than 3%. Simulation results of Z11 parameters showed that the antenna achieved satisfactory impedance matching with a 50Ω transmission line at 1.755 GHz, 3.65 GHz, 4.668 GHz and 7.031 GHz and with a 75Ω transmission line at 9.366 GHz, 14.634 GHz, 16.461 GHz, 17.304 GHz and 18.265 GHz. The antenna recorded satisfactory gains and excellent radiation efficiencies in all these frequencies. The antenna can be used for a wide range of applications because of its wider bandwidth.en_US
dc.identifier.citationJOURNAL OF SUSTAINABLE RESEARCH IN ENGINEERING Vol 1, No 4 (2014)en_US
dc.identifier.urihttp://www.jkuat-sri.com/ojs/index.php/sri/article/view/119
dc.identifier.urihttp://hdl.handle.net/123456789/1108
dc.language.isoenen_US
dc.subjectBandwidth improvementen_US
dc.subjectCircular microstrip patch antennaen_US
dc.subjectShape modificationen_US
dc.subjectSimulationen_US
dc.titleImproving the Bandwidth of a Circular Microstrip Patch Antenna through Shape Modificationen_US
dc.typeArticleen_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: